TdB 葡聚醣 聚蔗糖 產品列表

TdB Consultancy AB

FITC標記 FITC-labelled

產品名稱 英文名稱 描述 應用
FITC標記葡聚醣 Fluorescein Isothiocyanate-dextran 未含帶電荷基團(中性) 用於組織、細胞、人類(非臨床)和動物研究。比如用於腸組織、腦和神經系統、腫瘤組織和腎組織的滲透性(permeability)、血管滲透性(vascular permeability)和微循環(microcirculation)的研究。也可用於研究細胞通滲透性、吞噬作用(phagocytosis)和內吞作用(endocytosis)及藥物輸送(drug delivery)。
FITC標記聚蔗糖* Fluorescein Isothiocyanatepolysucrose* 未含帶電荷基團(中性) 請參考 FITC標記葡聚醣。
FITC標記CM-葡聚醣 Fluorescein IsothiocyanateCarboxymethyl-dextran 含有負電荷基團(負電荷) 用於研究負電荷對滲透性的影響(如FITC標記葡聚醣)。羧基可以將一些感興趣的生物活性的分子(例如藥物、酶、診斷示踪劑)連接到葡聚醣(dextran)上,從而做進一步的滲透性和輸送的研究。
FITC 標記CM-聚蔗糖 Fluorescein IsothiocyanateCarboxymethyl-polysucrose* 含有負電荷基團(負電荷) 聚蔗糖呈現低滲透壓(osmotic pressure)和生物相容的特性,但在血液中不易降解。相比其他多醣,它的構象更類似於蛋白質的球狀結構。
FITC標記DEAE-葡聚醣 Fluorescein IsothiocyanateDiethylaminoethyl-dextran 含有正電荷基團(正電荷) 請參考FITC標記葡聚醣,但這些產品專門設計用於研究正電荷對膜(membrane)和組織滲透性(tissue permeability)的影響。DEAE葡聚醣也常用作載體、佐劑(adjuvants)和體內DNA轉運體(transporters)。
FITC標記DEAE-聚蔗糖* Fluorescein IsothiocyanateDiethylaminoethyl-polysucrose* 含有正電荷基團(正電荷) 類似於FITC-CM標記聚蔗糖,但帶正電荷。
FITC標記硫酸葡聚醣 Fluorescein Isothiocyanate-dextran sulphate
(DSS)
帶螢光標記的葡聚醣硫酸鈉 在潰瘍性結腸炎(UC, ulcerative colitis)的研究中(參見硫酸葡聚醣鈉(DSS)),作為追蹤硫酸葡聚醣鈉(DSS)體內命運和壽命的探針。
FITC標記菊糖 Fluorescein Isothiocyanate-inulin 菊糖主要由果糖(fructose)和末端葡萄糖(glucose)組成 應用於腎小球過濾(Glomerular filtration)。它是腎功能的關鍵指標。菊糖清除率測量(Inulin clearance measurement)。相比較於其他估算肌酐清除率(creainine clearance)的手段,菊糖是用來測量腎功能“黃金標準”。
FITC標記透明質酸(馬鏈球菌) Fluorescein Hyaluronic acid-Se 來自馬鏈球菌(Se=Streptococcus equi)的透明質酸鈉鹽。它也被稱為透明質酸,是一種帶負電荷的,非硫酸化的糖氨基聚糖(glcosamino-glycan),廣泛分佈於結締組織,上皮組織(epithelial)和神經組織中。 應用於眼科和化妝品研發應用。比如,可用來跟踪透明質酸(hyaluronan)在體內的命運。也用來研究透明質酸-受體表達的患病位點及藥物輸送,組織修復和再生等分子成像領域的應用。 透明質酸在組織水合作用(tissue hydration)、蛋白聚醣組織化(proteoglycan organizaiton)、粘附(adhesion),分化和細胞遷移(differentiation and cell migration)(體內或者體外)以及天然潤滑劑等許多生物進程中起作用。透明質酸不具有免疫原性(immunogenic)並且可生物降解的特性,對惡性腫瘤發生進展(malignant tumor progression)起了一定作用。
FITC標記海藻糖 Fluorescein Isothiocyanate-Trehalose 海藻糖,也稱為mycose或tremalose。它是由2個葡萄糖通過α,α-1,1-糖苷鍵所形成 的天然的雙醣。 細胞生物學。檢測具有活性的分枝桿菌的探針(mycobacteria)。
ATTO488標記葡聚醣 ATTO488-labeled dextran ATTO 488是螢光素(fluorescein)的替代品,具有更強的光穩定性 (photostability)和更亮的螢光(fluorescence)特性。
請參考FITC標記葡聚醣。螢光基團ATTO 488 非常適合單分子檢測(single-moleculedetection)應用和高分辨率顯微鏡。它也可用於流式細胞術(flow cytometry)、螢光原位雜交(Fluorescence in-situ hybridization, FISH)等等。

TRITC標記 TRITC-labelled

產品名稱 英文名稱 描述 應用
TRITC標記葡聚醣 Tetramethylrhodamine isothiocyana- te-dextran

請參考FITC標記葡聚醣的應用。

注意:相比FITC,TRITC發射的熒光強度更少依賴於pH。在實驗的環境中,更長的發射波長可以使背景干擾達到最小化。

TRITC標記透明質酸(馬鏈球菌) Tetramethylrhodamine isothiocyana- te-Hyaluronic acid-Se

請參考FITC標記透明質酸(馬鏈球菌)的應用。

注意:相比FITC,TRITC標記透明質酸對pH不敏感,發射波長更長,能降低實驗中的背景干擾。

TRITC標記聚蔗糖* Tetramethylrhodamine isothiocyana- te-polysucrose*

請參考FITC標記聚蔗糖的應用。

注意:相比FITC,TRITC標記聚蔗糖對pH不敏感,發射波長更長,能降低實驗中的背景干擾。

TRITC標記CM-聚蔗糖* Tetramethylrhodamine isothiocyana-te-Carboxymethyl-polysucrose*

請參考FITC標記CM-聚蔗糖的應用。

注意:相比FITC,TRITC標記聚蔗糖對pH不敏感,發射波長更長,能降低實驗中的背景干擾。

藍色標記

產品名稱 英文名稱 描述 應用
藍色葡聚醣 Blue Dextran 具有可見藍色的葡聚醣 用於色譜(作為空白體積標記)和用於過濾器的控制。也可用於細胞工作和滲透性研究,蛋白質和酶與藍色葡聚醣的結合。使用標準的UV和RI檢測器即可檢測。藍色葡聚醣已被用於阿滋海默症研究工作中。

無標記

產品名稱 英文名稱 描述 應用
硫酸葡聚醣鈉 (DSS) Dextran Sulphate Sodium (DSS) 結腸炎研究的黃金標準。炎症性腸病是一種病因不明的多因素疾病,由兩種主要亞型組成,即潰瘍性結腸炎(ulcerative colitis)和克羅恩病(Crohn’s disease)。硫酸葡聚醣鈉(DSS)用於誘導動物的結腸炎的實驗。改變DSS的濃度或劑量的周期可以容易地誘發急性,慢性或複發性結腸炎。
高硫硫酸葡聚醣 High sulfated Dextran Sulfate 高度硫酸化(按應用所需) 可能與細胞,組織和器官以及具有輕微正電荷的可溶性生物介質(酶、蛋白質等)相互作用。用於藥物研究中感興趣的大分子的處理。結腸炎(Colitis)動物模型、化妝品、分子聚集(molecular crowding)、細胞培養基添加劑(cell media additive)、細胞保存(cell preservation)、脂蛋白選擇性沉澱、探針雜交膜(probe hybridization membrane)固定化DNA、釋放DNA-組蛋白複合物中的DNA,以及抑制RNA與核醣體的結合。具有抗病毒特性。另參見DSS。
低硫硫酸葡聚醣 Low sulfated Dextran Sulfate 低度硫酸化(按應用所需) 如上所述使用,但較低的電荷密度可能會改變性能並降低毒性。結腸炎/動物模型、化妝品、分子擁擠(molecular crowding)、細胞培養基添加劑(cell media additive)、細胞保存(cell preservation)、脂蛋白選擇性沉澱(selective precipitation of lipoproteins)、探針雜交膜(probe hydridization membrane)固定化DNA、從DNA-組蛋白複合物中釋放DNA以及抑制RNA與核醣體的結合。另參見DSS。
苯基葡聚醣 Phenyl Dextran 親脂性,中性 用於塗覆微孔板,塑料和相關表面以賦予其更強的親水性。該性質在許多分析或診斷設備中已被證明是有價值的。
羧甲基(CM)葡聚醣 Carboxymethyl Dextran 含有負電荷基團(負電荷) 羧甲基(CM)基團在無機和有機反應中可以與陽離子相互作用,這是製備綴合物(conjugates)中有用的連接劑(linker)。它們也可以用作敏感的(sensitive)生物聚合物的穩定劑(stabilizers)。在診斷設備或化妝品和藥物開發中,提供有價值的原材料。
羧甲基(CM)聚蔗糖* Carboxymethyl Polysucrose 含有負電荷基團(負電荷) 參見CM-葡聚醣。
DEAE-葡聚醣 DEAE Dextran 含有正電荷基團(正電荷) 在潰瘍性結腸炎(UC, ulcerative colitis)的研究中(參見硫酸葡聚醣鈉(DSS)),作為追蹤硫酸葡聚醣鈉(DSS)體內命運和壽命的探針。
聚蔗糖* Polysucrose 中性 一種具有低毒性、低滲透壓(ow osmotic pressure)、生物相容的(biocompatible),但不易在血液中降解和具有類似蛋白球狀構象(protein-like, globular)等很多有趣特性的蔗糖聚合物(polysucrose)。具有比葡聚醣更緊湊的結構。易溶於水和鹽溶液。構象跟其他多醣比起來,更加類似於蛋白質的球狀結構。
葡聚醣季銨鹽 Trimethylammonium alkyl dextran 含有正電荷基團(正電荷) 一種帶有季銨基團(quaternary ammonium),不依賴於pH的帶正電荷的(non-pH dependent positive charge)陽離子聚合物。應用相類似於DEAE-葡聚醣,可作為載體、佐劑、體內DNA轉運體,但更穩定。

此產品目前沒有詳細的產品列表,請來電洽詢。

硫酸葡聚醣鈉 Dextran Sulphate Sodium (DSS)

TRITC標記葡聚醣 TRITC-dextran

  • Nitric oxide production by glomerular podocytes, Oleg Palygin et al., Nitric Oxide, 2018.
  • Computer-aided quantification of microvascular networks: Application to alterations due to pathological angiogenesis in the hamster, Carlos A.Bulant et al., Microvascular Research, 2017.
  • Intravital imaging of the kidney in a rat model of salt-sensitive hypertension, Bradley T. Endres et al., Renal physiology, 2017.
  • Honkura, N.; Richards, M,; Laviña, B.; Sáinz-Jaspeado, M.; Betsholtz, C.; Lena Claesson-Welsh, L. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nat. Commun. 2018, 9, 2746.
  • Bogoslowski, A.; Butcher, E. C.; Kubes, P. Neutrophils recruited through high endothelial venules of the lymph nodes via PNAd intercept disseminating Staphylococcus aureus. Proc. Natl. Acad. Sci. USA. 2018, 115(10), 2449–2454.
  • Pradhan, S.; Smith, A. M.; Garson, C. J.; Hassani, I.; Seeto, W.J.; Pant, K.; Arnold, R. D.; Prabhakarpandian, B.; Lipke, E. A. A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy. Sci. Rep. 2018, 8, 3171.
  • Ogle, M. E.; Krieger, J. R.; Tellier, L. E.; McFaline-Figueroa, J.; Temenoff, J. S.; Botchwey, E. A. Dual Affinity Heparin-Based Hydrogels Achieve Pro-Regenerative Immunomodulation and Microvascular Remodeling. ACS Biomater. Sci. Eng. 2018, 4(4), 1241–1250.
  • Farboud, B.; Jarvis, E.; Roth, T. L.; Shin, J.; Corn, J. E.; Marson, A.; Meyer, B. J.; Patel, N. H.; Hochstrasser, M. L. Enhanced Genome Editing with Cas9 Ribonucleoprotein in Diverse Cells and Organisms. J. Vis. Exp. 2018, 135, 57350.
  • Shaw, S. K.; Schreiber. L.; Roland, F. M.; Battles, P. M.; Brennan, S. P.; Padanilam, S. J.; Smith, B. D. High Expression of Integrin αvβ3 Enables Uptake of Targeted Fluorescent Probes into Ovarian Cancer Cells and Tumors. Bioorg. Med. Chem. 2018, 26(8), 2085–2091.
  • Carbone, A.; Zefferino, R.; Beccia, E.; Casavola, V.; Castellani, S.; Gioia, S. D.; Giannone, V.; Seia, M.; Angiolillo, A.; Colombo, C.; Favia, M.; Conese, M. Gap Junctions Are Involved in the Rescue of CFTR-Dependent Chloride Efflux by Amniotic Mesenchymal Stem Cells in Coculture with Cystic Fibrosis CFBE41o- Cells. Stem Cells Int. 2018, 1203717.
  • Linder, M. I.; Köhler, M.; Boersema, P.; Weberruss, M.; Wandke, C.; Marino, J.; Ashiono, C.; Picotti, P.; Antonin, W.; Kutay, U. Mitotic Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated Phosphorylation of Key Interconnecting Nucleoporins. Dev. Cell. 2017, 43(2), 141–156.
  • Rohner, N. A.; Thomas, S. N. Flexible Macromolecule versus Rigid Particle Retention in the Injected Skin and Accumulation in Draining Lymph Nodes Are Differentially Influenced by Hydrodynamic Size. ACS Biomater Sci Eng. 2017, 3(2), 153–159.
  • Falzone, N.; Ackerman, N. L.; Rosales, L. F.; Bernal, M. A.; Liu, X.; Peeters, S. G. J. A.; Soto, M. S.; Corroyer-Dulmont, A. ; Bernaudin, M.; Grimoin, E.; Touzani, O.; Sibson, N. R.; Vallis, K. A. Dosimetric evaluation of radionuclides for VCAM-1-targeted radionuclide therapy of early brain metastases. Theranostics. 2018, 8(1), 292–303.
  • Steffensen, A. B.; Oernbo, E. K.; Anca Stoica, A.; Gerkau, N. J.; Barbuskaite, D.; Tritsaris, K.; Rose, C. R.; MacAulay, N. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun. 2018, 9, 2167.
  • Graham, D. M.; Andersen, T.; Sharek, L.; Uzer, G.; Rothenberg, K.; Hoffman, B. D.; Rubin, J.; Balland, M.; Bear, J. E.; Burridge, K. Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J. Cell Biol. 2018, 217(3), 895–914.
  • Williams,T. D.; Kay, R. R. The physiological regulation of macropinocytosis during Dictyostelium growth and development. J. Cell Sci. 2018, 131(6), jcs213736.
  • Tran, N. B. N. N.; Knorr, F.; Mak, W. C. ; Cheung, K. Y.; Richter, H.; Meinke, M.; Lademann, J.; Patzelt, A. Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin. Eur. J. Pharm. Biopharm. 2017, 116, 12-16.
  • Trietsch, S. J.; Naumovska, E.; Kurek, D.; Setyawati, M. C.; Vormann, M. K.; Wilschut, K. J.; Lanz, H. L.; Nicolas, A.; Ng, C. P.; Joore, J.; Kustermann, S.; Roth, A.; Hankemeier, T.; Moisan, A.; Vulto, P. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat. Commun. 2017, 8, 262.
  • Ford, C.; Nans, A.; Boucrot, E.; Hayward, R. D. Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog. 2018, 14(5), e1007051.
  • Herr, K. L.; Carey, A. M.; Heckman, T. I.; Chávez, J. L.; Johnson, C. N.; Harvey, E.; Gamroth, W. A.; Wulfing, B. S.; Van Kessel, R. A.; Marks, M. E. Exopolysaccharide production in Caulobacter crescentus: A resource allocation trade-off between protection and proliferation. PLoS One. 2018, 13(1), e0190371.
  • Wang, R.; Chow, Y. T.; Chen, S.; Ma, D.; Luo, T.; Tan, Y.; Sun, D. Magnetic Force-driven in Situ Selective Intracellular Delivery. Sci. Rep. 2018, 8, 14205.
  • Chiou, B.; Neal, E. H.; Bowman, A. B.; Lippmann, E. S.; Simpson, I. A.; Connor, J.R. Pharmaceutical iron formulations do not cross a model of the human blood-brain barrier. PLoS One. 2018, 13(6), e0198775.
  • Pradhan, S.; Smith, A. M.; Garson, C. J.; Hassani, I.; Seeto, W. J.; Pant, K.; Arnold, R. D.; Prabhakarpandian, B.; Lipke, E. A. A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy. Sci. Rep. 2018, 8, 3171.
  • Wang, Y.; Jin, Y.; Laviña, B.; Jakobsson, L. Characterization of multi-cellular dynamics of angiogenesis and vascular remodelling by intravital imaging of the wounded mouse cornea. Sci. Rep. 2018, 8, 10672.
  • Passaro, D.; Tullio, A. D.; Abarrategi, A.; Rouault-Pierre, K.; Foster,K.; Ariza-McNaughton, L. Montaner, B.; Chakravarty, P.; Bhaw, L.; Diana, G.; Lassailly, F.; Gribben, J.; Bonnet, D. Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell. 2017, 32(3), 324–341.
  • Dvoryanchikov, G.; Hernandez, D.; Roebber, J. K.; Hill, D. L.; Roper, S. D.; Chaudhari, N. Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat. Commun. 2017, 8, 760.
  • Fadzen, C. M.; Wolfe, J. M.; Choi-Fong Cho, C-F.; Chiocca, E. A.; Lawler, S. E.; Pentelute, B. L. Perfluoroarene–Based Peptide Macrocycles to Enhance Penetration Across the Blood–Brain Barrier. J. Am. Chem. Soc. 2017, 139(44), 15628–15631.
  • van Duinen, V.; van den Heuvel, A.; Trietsch, S. J.; Lanz, H. L. ; van Gils, J. M.; van Zonneveld, A. J.; Vulto, P.; Hankemeier, T. 96 perfusable blood vessels to study vascular permeability in vitro. Sci. Rep. 2017, 7, 18071.
  • Keane, T.J.; Dziki, J.; Sobieski, E.; Smoulder, A.; Castleton, A.; Turner, N.; White, L. J.; Badylak, S. F. Restoring Mucosal Barrier Function and Modifying Macrophage Phenotype with an Extracellular Matrix Hydrogel: Potential Therapy for Ulcerative Colitis. J. Crohns. Colitis. 2017, 11(3), 360-368.
  • Xue, Z.; Zhang, X.; Chen, M.; Lu,X.; Deng, R.; Ma, Y. Dendritic Cells Transduced with Single Immunoglobulin IL-1-Related Receptor Exhibit Immature Properties and Prolong Islet Allograft Survival. Front Immunol. 2017, 8, 1671.
  • Cardenal-Muñoz, E.; Barisch, C.; Lefrançois, L. H.; López-Jiménez, A. T.; Soldati, T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol. 2017, 7, 529.
  • Oji, A.; Amano, T.; Maeta, Y.; Hori, N.; Hatsuzawa, K.; Sato, K.; Nakanishi, T. Fate of methylated/unmethylated H19 imprinting control region after paternal and maternal pronuclear injection. Exp. Anim. 2017, 66(4), 367–378.
  • Vidil, T.; Hampu, N.; Hillmyer, M. A. Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order–Disorder Transition. ACS Cent. Sci. 2017, 3(10), 1114–1120.
  • Patzelt, A.; Mak, W. C.; Jung, S.; Knorr, F.; Meinke, M. C.; Richter, H.; Rühl, E.; Cheung, K. Y. Tran NBNN, Lademann J. Do nanoparticles have a future in dermal drug delivery? J. Control. Release. 2017, 246, 174-182.
  • Olmeda, D.; Cerezo-Wallis, D.; Riveiro-Falkenbach, E.; Pennacchi, P. C.; Contreras-Alcalde, M.; Ibarz, N.; Cifdaloz, M.; Catena, X.; Calvo, T. G.; Cañón, E.; Alonso, D.; Suarez, J.; Osterloh, L.; Graña, O.; Mulero, F.; Megías, D.; Cañamero, M.; Martínez-Torrecuadrada, J.; Mondal, C.; Martino, J. D.; Lora, D.; Martinez-Corral, I.; Bravo-Cordero, J. J.; Muñoz, J.; Puig, S.; Ortiz-Romero, P.; Rodriguez-Peralto, J. L.; Ortega, S.; Soengas, M. S. Whole body imaging of lymphovascular niches identifies premetastatic roles of MIDKINE. Nature. 2017, 546(7660), 676–680.
  • Paschke, P.; Knecht, D. A.; Silale, A.; Traynor, D.; Thomas D. Williams, T. D.; Thomason, P. A.; Insall, R. H.; Chubb, J. R.; Kay, R. R.; Veltman, D. M. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One. 2018, 13(5), e0196809.
  • Kennedy, T.; Broadie, K. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons. J. Neurosci. 2017, 37(41), 9844–9858.
    35. von Dassow, G.; Maslakova, S. A. The trochoblasts in the pilidium larva break an ancient spiralian constraint to enable continuous larval growth and maximally indirect development. EvoDevo. 2017, 8, 19.
  • Jin, Y.; Muhl, L.; Burmakin, M.; Wang, Y.; Duchez, A-C.; Betsholtz, C.; Arthur, H. M.; Jakobsson, L. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat. Cell Biol. 2017, 19(6), 639–652.
  • Endres, B. T.; Sandoval, R. M.; Rhodes, G. J.; Campos-Bilderback, S. B.; Kamocka, M. M.; Christopher McDermott-Roe, Staruschenko, A.; Molitoris, B. A.; Geurts, A. M.; Palygin, O. Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am. J. Physiol. Renal. Physiol. 2017, 313(2), F163–F173.
  • Pang, V.; David O. Bates, D. O.; Leach, L. Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin. Clin. Sci. (Lond) 2017, 131(23), 2763–2775.
  • Buckley, C. M.; Gopaldass, N.; Bosmani, C.; Johnston, S. A.; Soldati, T.; Insall, R. H.; King, J. S. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc. Natl. Acad. Sci. USA. 2016, 113(40), E5906–E5915.
  • Longden, T. A.; Dabertrand, F.; Koide, M.; Gonzales, A. l.; Tykocki, N. R.; Joseph E. Brayden, J. E.; Hill-Eubanks, D.; Nelson, M. T. Capillary K+-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow. Nat. Neurosci. 2017, 20(5), 717–726.
  • Zhang, B.; Montgomery, M.; Chamberlain, M. D.; Ogawa, S.; Korolj, A.; Pahnke, A.; Laura A. Well, L. A.; Massé, S.; Kim, J.; Reis, L.; Momen, A.; Nunes, S. S.; Aaron Wheeler, A.; Nanthakumar, K.; Keller, G.; Sefton, M. V.; Radisic, M. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosiss. Nat. Mater. 2016, 15(6), 669–678.
  • Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E. E.; Lopez-Soto, A.; Jacob, L.; Patwa, R.; Shah,H.; Xu, K.; Cross, J. R. Massagué, J. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016, 533(7604), 493–498.
  • Wu, L.; Zhou, B.; Oshiro-Rapley, N.; Li, M.; Paulo, J. A.; Webster, C. M.; Mou, F.; Kacergis, M. C.; Talkowski, M. E.; Carr, C. E.; Gygi, S. P.; Zheng, B.; Soukas, A. A. An Ancient, Unified Mechanism for Metformin Growth Inhibition in C. elegans and Cancer. Cell. 2016, 167(7), 1705–1718.
  • Junemann, A.; Filić, V.; Winterhoff, M.; Nordholz, B.; Litschko, C.; Schwellenbach, H.; Stephan, T.; Weber, I.; Faix, J. A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis. Proc. Natl. Acad. Sci. USA. 2016, 22,113(47), E7464–E7473.
  • Chow, Y. T.; Chen, S.; Wang, R.; Liu, C.; Kong, C.; Li, R. A.; Cheng, S. H.; Sun, D. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes. Sci. Rep. 2016, 6, 24127.
  • Emura, N.; Sakurai, N.; Takahashi, K.; Hashizume, T.; Sawai, K. OCT-4 expression is essential for the segregation of trophectoderm lineages in porcine preimplantation embryos. J. Reprod. Dev. 2016, 62(4), 401-8.
  • Barreiro, O.; Cibrian, D.; Clemente, C.; Alvarez, D.; Moreno, V.; Valiente, I.; Bernad, A.; Vestweber, D.; Arroyo, A. G.; Martín, P.; von Andrian, U. H.; Madrid, F. S. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. eLife. 2016, 5, e15251.
  • Tiwary, C. S.; Mudakavi, R. J.; Kishore, S. ; Kashyap, S.; Elumalai, R.; Chakravortty, D.; Raichur, A. M. ; Chattopadhyay, K. Magnetic iron nanoparticles for in vivo targeted delivery and as biocompatible contrast agents. RSC Adv. 2016, 6(115), 114344-114352.
  • Venkatesh, D.; Mruk, D.; Herter, J. M.; Cullere, X.; Chojnacka, K.; Cheng, C. Y.; Mayadas, T. N. AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function. Am. J. Pathol. 2016, 186(2), 270–284.
  • Song, K.H.; Fan, A. C.; Brlansky, J.T.;Trudeau, T.; Gutierrez-Hartmann, A.; Calvisi, M. L.; Borden, M. A. High Efficiency Molecular Delivery with Sequential Low-Energy Sonoporation Bursts. Theranostics. 2015, 5(12), 1419-27.
  • Buchert, M.; Rohde, F.; Eissmann, M.; Tebbutt, N.; Williams, B.; Tan, C. W.; Owen, A.; Hirokawa, Y.; Gnann, A.; Orend, G.; Orner, G.; Dashwood, R. H.; Heath, J. K.; Ernst, M.; Janssen, K-P. A hypermorphic epithelial β-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. Dis. Model. Mech. 2015, 8(11), 1361–1373.
  • Sato, M.; Sasaki,N.; Ato, M.; Hirakawa,S.; Sato, K.; Sato, K. Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability. PLoS One. 2015, 10(9), e0137301.
  • Joshi, G. N.; Goetjen, A. M.;Knecht, D. A.Silica particles cause NADPH oxidase-independent ROS generation and transient phagolysosomal leakage. Mol. Biol. Cell. 2015, 26(18), 3150-64.
  • Tanaka, M.; Tanaka, K.; Masaki, Y.; Miyazaki, M.; Kato, M.; Kotoh, K.; Enjoji, M.; Nakamuta, M.; Takayanagi, R. Intrahepatic microcirculatory disorder, parenchymal hypoxia and NOX4 upregulation result in zonal differences in hepatocyte apoptosis following lipopolysaccharide- and D-galactosamine-induced acute liver failure in rats. Int. J. Mol. Med. 2014, 33(2), 254-62.
  • Falkenstein, K.; De Lozanne, A. Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion. J. Cell Sci. 2014, 127(20), 4356–4367.
  • Yue, W.; Hamaï, A-; Tonelli, G.; Bauvy, C.; Nicolas, V.; Tharinger, H.; Codogno, P.; Mehrpour, M. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy. 2013, 9(5), 714–729.
  • Kilarski, W. W.; Güç, E.; Teo, J. C. M.; Oliver, R. S.; Lund, A. W.; Swartz, M. A. intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis. PLoS One. 2013, 8(2), e57135.
  • Ny, A.; Vandevelde, W.; Hohensinner, P.; Beerens, M.; Geudens, I.; Antonio Diez-Juan, A.; Brepoels, K.; Plaisance, S.; Krieg, P. A.; Langenberg, T.; Vinckier, S.; Luttun, A.; Carmeliet, P.; Dewerchin., M. A transgenic Xenopus laevis reporter model to study lymphangiogenesis. Biol. Open. 2013, 2(9), 882–890.
  • Reeves, K. J.; Brookes, Z. L.; Reed, M. W.; Brown, N. J. Evaluation of fluorescent plasma markers for in vivo microscopy of the microcirculation. J. Vasc. Res. 2012, 49(2), 132-43.
  • Pink, D. B.; Schulte, W.; Parseghian, M. H.; Zijlstra, A.; Lewis, J. D. Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery. PLoS One. 2012, 7(3), e33760.
  • Chandhoke, S. K.; Mooseker, M. S. A role for myosin IXb, a motor–RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol. Biol. Cell. 2012, 23(13), 2468–2480.
  • Stenbeck, G.; Lawrence, K. M.; Anthony P. Albert, A. P. Hormone-stimulated modulation of endocytic trafficking in osteoclasts. Front Endocrinol (Lausanne) 2012, 3, 103.
  • Zhang, J.; Li, J. X.; Razavi, F. S.; Mumin, A. M. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles. J. Nanopart. Res. 2011, 13(5), 1909-1916.
  • Annesley, S. J.; Bago, R. B.; Bosnar, M. H.; Filic, V.; Marinović, M.; Weber, I.; Mehta, A.; Fisher, P. R. Dictyostelium discoideum nucleoside diphosphate kinase C plays a negative regulatory role in phagocytosis, macropinocytosis and exocytosis. PLoS One. 2011, 6(10), e26024.
  • Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, A. M. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs Mater. Sci. Eng. C-Mater. Biol. Appl. 2011, 31(2), 342-349.
  • Clarke, M.; Maddera, L.; Engel, U.; Gerisch, G.Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging. PLoS One. 2010, 5(1), e8585.
  • Shah, G. V.; Muralidharan, A.; Gokulgandhi, M.; Soan, K.; Thomas, S.Cadherin switching and activation of beta-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer. J. Biol. Chem. 2009, 284(2), 1018-30.
  • Mairhofer, M.; Steiner, M.; Salzer, U.; Prohaska, R.Stomatin-like protein-1 interacts with stomatin and is targeted to late endosomes. J. Biol. Chem. 2009, 284(42), 29218-29.
  • Tong, W-J.; Zhu, Y.; Gao, C-Y. Fabrication of protein microcapsules by controlled precipitation and cross-linking. Chem. J. Chin. Univ.-Chin. 2008, 29(8), 1694-1697.
  • Tong, W.; Dong, W.; Gao, C.; Möhwald, H. Charge-controlled permeability of polyelectrolyte microcapsules. J. Phys. Chem. B. 2005, 109(27), 13159-65.
  • Ackermann, C.; Dorresteijn, A.; Fischer, A. Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J. Morphol. 2005, 266(3), 258-80.
  • Van der Wijk, T.; Tomassen, S. F.; Houtsmuller, A. B.; de Jonge, H. R. ; Tilly, B. C. Increased vesicle recycling in response to osmotic cell swelling. Cause and consequence of hypotonicity-provoked ATP release. J. Biol. Chem. 2003, 278(41), 40020-5.
  • Fittipaldi, A.; Ferrari, A.; Zoppe, M, Arcangeli, C.; Pellegrini, V.; Beltram, F.; Giacca, M. Cell membrane lipidrafts mediatecaveolar endocytosis inHIV-1Tat fusionproteins. J. Biol. Chem. 2003(34), 141-49.
  • Clarke, M.; Köhler, J.; Arana, Q.; Liu, T.; Heuser, J.; Gerisch, G. Dynamics of the vacuolar H(+)-ATPase in the contractile vacuole complex and the endosomal pathway of Dictyostelium cells. J. Cell Sci. 2002, 115, 2893-905.
  • Symons, J. D.; Mullick, A. E.; Ensunsa, J. L.; Ma, A. A.; Rutledge, J. C. Hyperhomocysteinemia evoked by folate depletion: effects on coronary and carotid arterial function. Arterioscler. Thromb. Vasc. Biol. 2002, 22(5), 772-80.
  • Kauppi, M.; Simonsen, A.; Bremnes, B.; Vieira, A.; Callaghan, J.; Stenmark, H.; Olkkonen, V. M. The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J. Cell. Sci. 2002, 115, 899-911.
  • Mullick, J.; Walsh, B.A.; Reiser, K.M.; Rutledge, J. C. Chronic estradiol treatment attenuates stiffeningglycol-oxida- tionandpermeability of therat caroidarteries. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H2204-H2210.
  • Walsh, B. A.; Mullick, A. E.; Banka, C. E.; Rutledge, J. C. 17beta-estradiol acts separately on the LDL particle and artery wall to reduce LDL accumulation. J. Lipid Res. 2000, 41(1), 134-41.
  • Gardner, G.; Banka, C.L.; Roberts, K.A.; Mullick, A.E.; Rutledge, J.C. Modified LDL-mediated increases in endothelial layer permeability are attenuated with 17 beta-estradiol. Arterioscler. Thromb. Vasc. Biol. 1999, 19(4), 854-61.
  • Geisow, M. J. Fluorescein conjugates as indicators of subcellular pH. A critical evaluation. Exp. Cell Res. 1984, 150(1), 29-35.

FITC標記葡聚醣 FITC-dextran

神經系統 Nervous system

  • Brandt, H.M., Apkarian, A.V., 1992. Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey. Journal of Neuroscience Methods 45, 35-40. doi:10.1016/0165-0270(92)90041-B
  • Foster, E.F., Bottjer, S.W., 1998. Axonal connections of the High Vocal Center and surrounding cortical regions in juvenile and adult male zebra finches. J. Comp. Neurol. 397, 118-138. doi:10.1002/(SICI)1096-9861(19980720)397:1<118::AID-CNE9>3.0.CO;2-3
  • Fritzsch, B., Northcutt, R.G., 1992. A Plastic Embedding Technique for Analyzing Fluorescent Dextran-Amine Labelled Neuronal Profiles. Biotech Histochem 67, 153-157. doi:10.3109/10520299209110026
  • Glover, J.C., Petursdottir, G., Jansen, J.K.S., 1986. Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. Journal of Neuroscience Methods 18, 243-254. doi:10.1016/0165-02701(86)90011-7
  • Gross, J.B., Hanken, J., 2004a. Use of fluorescent dextran conjugates as a long-term marker of osteogenic neural crest in frogs. Dev. Dyn. 230, 100-106.
    doi:10.1002/dvdy.20036
  • Larsen, K.E., Sulzer, D., 2002. Autophagy in neurons a review [WWW Document]. URL https://digitum.um.es/xmlui/handle/10201/20821 (accessed 5.26.15)
  • Mooradian, A.D., Haas, M.J., Batejko. O., Hovsepyan, M., Feman, S.S., 2005. Statins Ameliorate Endothelial Barrier Permeability Changes in the Cerebral Tissue of Streptozotocin-Induced Diabetic Rats. Diabetes 54. 2977-2982. doi:10.2337/diabetes.54.10.2977

癌症 Cancer

  • Chen, M.-Y., Chen, Z.-Z., Wu, L.-L., Tang, H.-W., Pang, D-W., 2013. Goat anti-rabbit IgG conjugated fluorescent dye-doped silica nanoparticles for human breast carcinoma cell recognition. Analyst 138, 7411-7416. doi:10.1039/C3AN01654D
  • Dai, T., Zhou, S., Yin, C., Li, S., Cao, W., Liu, W., Sun, K., Dou, H., Cao, Y., Zhou, G., 2014. Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials 35, 8227-8235. doi:10.1016/j.biomaterials.2014.06.012
  • Hosseini, A., Baker, J.L., Tokin, C.A., Qin, Z., Hall, D.J., Stupak, D.G., Hayashi, T., Wallace, A.M., Vera, D.R., 2014. Fluorescent-tilmanocept for tumor margin analysis in the mouse model. J. Surg. Res. 190, 528-534. doi:10.1016/j.jss. 2014.05.012
  • Loo, C., Lin, A., Hirsch, L., Lee, M.-H., Barton, J., Halas, N., West, J., Drezek, R., 2004. Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer. Technol Cancer Res Treat 3, 33-40. doi:10.1177/153303460400300104
  • Potiron, V.A., Abderrahmani, R., Clément-Colmou. K., Marionneau-Lambot, S., Oullier, T., Paris, F., Supiot, S., 2013. Improved functionality of the vasculature during conventionally fractionated radiation therapy of prostate cancer. PLoS ONE 8, e84076. doi:10.1371/journal.pone.0084076
  • Varshosaz, J., Hassanzadeh, F., Sadeghi Aliabadi, H., Nayobsadrian, M., Banitalebi, M., Rostami, M., 2014. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. Biomed Res Int 2014, 525684. doi:10.1155/2014/525684
  • Wang, X., Xing, X., Zhang, B., Liu, F., Cheng, Y., Shi, D., 2014. Surface engineered antifouling optomagnetic SPIONs for bimodal targeted imaging of pancreatic cancer cells. Int J Nanomedicine 9, 1601-1615. doi:10.2147/IJN.S58334

心臟疾病 Heart

  • Binelli, E.A., Luna, A.N., LeClair, E.E., 2014. Anatomy and ontogeny of a novel hemodynamic organ in zebrafish. Anat Rec (Hoboken) 297, 2299-2317. doi:10.1002/ar.23002
  • Camilleri, J.P., Nlom, M.O., Joseph, D., Michel, J.B., Barres, D., Mignot, J., 1983. Capillary perfusion patterns in reperfused ischemic subendocardial myocardium: Experimental study using fluorescent dextran. Experimental and Molecular Pathology 39, 89-99. doi:10.1016/0014-4800(83)90043-6

腦&血腦障壁 Brain & Brain-blood barrier

  • Bass, A.H., Gilland, E.H., Baker, R., 2008. Evolutionary Origins for Social Vocalization in a Vertebrate Hindbrain-Spinal Compartment. Science 321, 417-421. doi:10.1126/science.1157632
  • Bommana, M.M., Kirthivasan. B. Squillante. E., 2012. In vivo brain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles. Drug Delivery 19, 298-306. doi:10.3109/10717544.2012.714812
  • Carthy, D.J.M., Malhotra, M., O’Mahony, A.M., Cryan, J.F., O’Driscoll, C.M., 2014. Nanoparticles and the Blood-Brain Barrier: Advancing from In-Vitro Models Towards Therapeutic Significance. Pharm Res 32, 1161-1185. doi:10.1007/s11095-014-1545-6
  • Fritzsch, B., 1993. Fast axonal diffusion of 3000 molecular weight dextran amines. Journal of Neuroscience Methods 50, 95-103. doi:10.1016/0165-0270(93)90060-5
  • Hoffmann, A., Bredno, J., Wendland, M., Derugin, N., Ohara, P., Wintermark, M., 2010. High and Low Molecular Weight Fluorescein Isothiocyanate (FITC)-Dextrans to Assess Blood-Brain Barrier Disruption: Technical Considerations. Transl. Stroke Res. 2, 106-111. doi:10.1007/s12975-010-0049-X
  • Lehmann, T.-N., Gabriel, S., Eilers, A., Njunting, M., Kovacs, R., Schulze, K., Lanksch, W.R., Heinemann, U., 2001. Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. European Journal of Neuroscience 14. 83-95. doi:10.1046/j.0953-816x.2001.01632.x
  • Lehmann, T.-N., Gabriel, S., Kovacs, R. Eilers, A., Kivi, A., Schulze, K., Lanksch, W.R., Meencke, H.J., Heinemann. U., 2000. Alterations of Neuronal Connectivity in Area CA1 of Hippocampal Slices from Temporal Lobe Epilepsy Patients and from Pilocarpine-Treated Epileptic Rats. Epilepsia 41, S190-S194. doi:10.1111/j.1528-1157.2000.tb01580.x
  • Liao, G.P., Olson, S.D., Kota, D.J., Hetz, R.A., Smith, P., Bedi, S., Cox, C.S., 2014. Far-red tracer analysis of traumatic cerebrovascular permeability. J. Surg. Res. 190, 628-633. doi:10.1016/j.jss.2014.05.011
  • Linke, R., De Lima, A. d., Schwegler, H., Pape, H.-C., 1999. Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: Possible substrates of a subcortical visual pathway to the amygdala. J. Comp. Neurol. 403, 158-170. doi:10.1002/(SICI)1096-9861(19990111)403:2<158-AID-CNE2>3.0.CO;2-6
  • Mooradian, A.D., Haas, M.J., Batejko, O., Hovsepyan, M., Feman, S.S., 2005. Statins Ameliorate Endothelial Barrier Permeability Changes in the Cerebral Tissue of Streptozotocin-Induced Diabetic Rats. Diabetes 54. 2977-2982. doi:10.2337/diabetes.54.10.2977
  • Morita, S., Miyata, S., 2013. Accessibility of low-molecular-mass molecules to the median eminence and arcuate hypothalamic nucleus of adult mouse. Cell Biochem. Funct. 31, 668-677. doi:10.1002/cbf.2953
  • Ohta, Y., Dubuc, R., Grillner, S., 1991. A new population of neurons with crossed axons in the lamprey spinal cord. Brain Research 564, 143-148. doi:10.1016/0006 8993(91)91364-7
  • Sajja, R.K., Prasad, S., Cucullo, L., 2014. Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS 11, 8. doi:10.1186/2045-8118-11-8
  • Sarkar, S., Schmued, L., 2012. In vivo administration of fluorescent dextrans for the specific and sensitive localization of brain vascular pericytes and their characterization in normal and neurotoxin exposed brains. NeuroToxicology, Special Review Section 33, 436-443. doi:10.1016/j.neuro.2012.04.004
  • Schmucd, L., Kyriakidis, K., Heimer. L., 1990. In vivo anterograde and retrograde axonal trnasport of the fluoresecent rhodamine-dextran-amine, Fluor-Ruby, within the CNS. Brain Research 526, 127-134. doi:10.1016/0006-8993(90)90258-D
  • Shi, L., Zeng, M., Sun, Y., Fu, B.M., 2014. Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy. J Biomech Eng 136, 031005. doi:10.1115/1.4025892

淋巴系統 Lymphatic system

  • Baker, A., Semple, J.L., Moore, S., Johnston, M., 2014. Lymphatic function is impaired following irradiation of a single lymph node. Lymphat Res Biol 12, 76-88 doi:10.1089/Irb.2013.0036
  • Emerson, D.K., Limmer, K.K., Hall. D.J., Han, S.-H., Eckelman, W.C., Kane, C.J., Wallace, A.M., Vera, D.R., 2012. A receptor-targeted fluorescent radiopharmaceutical for multireporter sentinel lymph node imaging. Radiology 265, 186-193. doi:10.1148/radiol.12120638
  • Karpanen, T., Wirzenius, M., Mäkinen, T., Veikkola, T., Haisma, H.J., Achen, M.G., Stacker, S.A., Pytowski, B., Ylä-Herttuala, S., Alitalo, K., 2006. Lymphangiogenic Growth Factor Responsiveness Is Modulated by Postnatal Lymphatic Vessel Maturation. The American Journal of Pathology 169.708-718. doi:10.2353/ajpath.2006.051200
  • Küchler, A.M., Gjini, E., Peterson-Maduro, j., Cancilla, B., Wolburg, H., Schulte-Merker, S., 2006. Development of the Zebrafish Lymphatic System Requires Vegfc Signaling. Current Biology 16, 1244-1248. doi:10.1016/j.cub.2006.05.026
  • Leu, A.J., Berk, D.A., Lymboussaki, A., Alitalo, K., Jain, R.K., 2000. Absence of Functional Lymphatics within a Murine Sarcoma: A Molecular and Functional Evaluation. Cancer Res 60, 4324-4327.
  • Liss, M.A., Stroup, S.P., Qin, Z., Hoh, C.K., Hall, D.J., Vera, D.R., Kane, C.J., 2014. Robotic-assisted fluorescence sentinel lymph node mapping using multimodal image guidance in an animal model. Urology 84, 982.e9-14. doi:10.1016/j.urology.2014.06.021
  • Su, H., Mou, Y., An, Y., Han, W., Huang, X, Xia, G., Ni, Y., Zhang, Y., Ma, J., Hu, Q., 2013. The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging. Int J Nanomedicine 8, 3737-3744. doi:10.2147/IJN.S52135

胚胎研究 Embryonic studies

  • Albukhaty, S., Naderi-Manesh, H., Tiraihi. T., 2013. In vitro labeling of neural stem cells with poly-L-lysine coated super paramagnetic nanoparticles for green fluorescent protein transfection. Iran. Biomed. J. 17, 71-76.
  • Hodor, P.G., Ettensohn, C.A., 1998. The Dynamics and Regulation of Mesenchymal Cell Fusion in the Sea Urchin Embryo. Developmental Biology 199, 111-124. doi:10.1006/dbio. 1998.8924
  • Kim, K., Drummond, I., Ibraghimov-Beskrovnaya, O., Klinger, K., Arnaout, M.A., 2000. Polycystin 1 is required for the structural integrity of blood vessels. PNAS 97, 1731-1736. doi:10.1073/pnas.040550097
  • Mehlmann, L.M., Jones, T.L.Z., Jaffe, L.A., 2002. Meiotic Arrest in the Mouse Follicle Maintained by a Gs Protein in the Oocyte. Science 297, 1343-1345. doi:10.1126/science.1073978
  • Zhong, T.P., Childs, S., Leu, J.P., Fishman, M.C., 2001. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220. doi:10.1038/35102599

膜研究 Membrane studies

  • Chazotte, B., 2009. Labeling Pinocytotic Vesicles and Cytoplasm with Fluorescent Dextrans or Ficolls for Imaging Cold Spring Harb Protoc 2009, pdb.prot4951. doi:10.1101/pdb.prot4951
  • Fischer, C., Steffensen, J.F., 2007. Plasma FITC-dextran exchange between the primary and secondary circulatory systems in the Atlantic cod, Gadus Morhua. Fish Physiol Biochem 34, 245-249. doi:10.1007/s10695-007-9183-0
  • Gillies, L.A., Du, H., Peters, B., Knudson, C.M., Newmeyer, D.D., Kuwana, T., 2015. Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes. Mol. Biol. Cell 26, 339-349. doi:10.1091/mbc.E13-11-0638
  • Kato, M., Neil, T.K., Fearnley, D.B., McLellan, A.D., Vuckovic, S., Hart, D.N.J., 2000. Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int. Immunol. 12, 1511-1519. doi:10.1093/intimm/12.11.1511
  • Khanna, S., Hudson, B., Pepper, C.J., Amso. N.N., Coakley, W.T., 2006. Fluorescein isothiocynate-dextran uptake by chinese hamster ovary cells in a 1.5 mhz ultrasonic standing wave in the presence of contrast agent. Ultrasound in Medicine & Biology 32, 289-295. doi:10.1016/j.ultrasmedbio.2005.11.002
  • Kotb, A.M., Müller, T., Xie, J., Anand-Apte. B., Endlich. K. Endlich, N., 2014. Simultaneous assessment of glomerular filtration and barrier function in live zebrafish. Am. J. Physiol. Renal Physiol. 307, F1427-1434. doi:10.1152/ajprenal.00029.2014.
  • Lai, X., Price, C., Lu. X.L., Wang, L., 2014. Imaging and quantifying solute transport across periosteum: implications for muscle-bone crosstalk. Bone 66, 82-89. doi:10.1016/j.bone.2014.06.002
  • Leopold, E., Gefen, A., 2013. Changes in permeability of the plasma membrane of myoblasts to fluorescent dyes with different molecular masses under sustained uniaxial stretching. Med Eng Phys 35. 601-607. doi:10.1016/j.medengphy.2012.07.004
  • Ley, K., Arfors, K.-E., 1986. Segmental differences of microvascular permeability for FITC-dextrans measured in the hamster cheek pouch. Microvascular Research 31, 84-99. doi:10.1016/0026-2862(86)90009-9
  • Li, H., Dou, S.-X., Liu, Y.-R., Li, W., Xie, P., Wang, W.-C., Wang, P.-Y., 2015. Mapping intracellular diffusion distribution using single quantum dot tracking: compartmentalized diffusion defined by endoplasmic reticulum. J. Am. Chem. Soc. 137, 436-444. doi:10.1021/ja511273c
  • Li, L., Wan, T., Wan, M., Liu, B., Cheng, R., Zhang, R., 2015. The effect of the size of fluorescent dextran on its endocytic pathway. Cell Biol. Int. 39, 531-539. doi:10.1002/cbin.10424
  • Lindsey, J.D., Weinreb, R.N., 2002. Identification of the Mouse Uveoscleral Outflow Pathway Using Fluorescent Dextran. Invest. Ophthalmol. Vis. Sci. 43, 2201-2205.
  • Paszti-Gere, E., Barna, R.F., Kovago, C., Szauder, I., Ujhelyi, G., Jakab, C., Meggyesházi, N., Szekacs, A., 2014. Changes in the Distribution of Type II Transmembrane Serine Protease, TMPRSS2 and in Paracellular Permeability in IPEC-J2 Cells Exposed to Oxidative Stress. Inflammation 38, 775-783. doi:10.1007/s10753-014-9988-9
  • Patel, M.P., Churchman, S.T., Cruchley, A.T., Braden, M., Williams, D.M., 2013. Electrically induced transport of macromolecules through oral buccal mucosa. Dent Mater 29, 674-681. doi:10.1016/j.dental. 2013.03.016
  • Sánchez-Eugenia, R., Goikolea, J., Gil-Cartón, D., Sánchez-Magraner, L., Guérin, D.M.A., 2015. Triatoma virus recombinant VP4 protein induces membrane permeability through dynamic pores. J. Virol. 89.4645-4654. doi:10.1128/JVI.00011-15
  • Shi, X., Zhang, F., Urdang, Z., Dai, M., Neng, L., Zhang, J., Chen, S., Ramamoorthy, S., Nuttall, A.L., 2014. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow. Hear. Res. 313, 38-46. doi:10.1016/j.heares.2014.04.006
  • Wijk, T. van der, Tomassen, S.F.B., Houtsmuller, A.B., Jonge, H.R. de, Tilly, B.C., 2003. Increased Vesicle Recycling in Response to Osmotic Cell Swelling CAUSE AND CONSEQUENCE OF HYPOTONICITY-PROVOKED ATP RELEASE. J. Biol. Chem. 278.40020-40025. doi:10.1074/jbc.M307603200

藥物制放 Drug delivery

  • Atkinson, E.G., Jones, S., Ellis, B.A., Dumonde, D.C., Graham, E., 1991. Molecular size of retinal vascular leakage determined by FITC-dextran angiography in patients with posterior uveitis. Eye 5, 440-446. doi:10.1038/eve.1991.71
  • Blagus, T., Markelc, B., Cemazar, M., Kosjek, T., Preat, V., Miklavcic, D., Sersa, G., 2013. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Release 172, 862-871. doi:10.1016/j.jconrel 2013.09.030
  • Boric, M.P., Roblero, J.S., Duran, W.N., 1987. Quantitation of bradykinin-induced microvascular leakage of FITC-Dextran in rat cremaster muscle. Microvascular Research 33, 397-412. doi:10.1016/0026-2862(87)90030-6
  • Kastner, C., Löbler, M., Sternberg, K., Reske, T., Stachs, O., Guthoff, R., Schmitz, K.-P., 2013. Permeability of the anterior lens capsule for large molecules and small drugs. Curr. Eye Res. 38, 1057-1063. doi:10.3109/02713683.2013.803288
  • Lung Diseases and Conditions: New Lung Injury Findings from Rush University Outlined (Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury), 2014. Life Science Weekly 2442.
  • Miller, D.L., Pislaru, S.V., Greenleaf. J.F., 2002. Sonoporation: Mechanical DNA Delivery by Ultrasonic Cavitation. Somat Cell Mol Genet 27, 115-134. doi:10.1023/A:1022983907223
  • Reiner, A., Veenman, C.L., Medina, L., Jiao, Y., Del Mar, N., Honig, M.G., 2000. Pathway tracing using biotinylated dextran amines. Journal of Neuroscience Methods 103, 23-37. doi:10.1016/S0165-0270(00)00293-4
  • Wu, D.-O., Lu, B., Chang, C., Chen, C-S., Wang, T., Zhang, Y.-Y., Cheng, S.-X., Jiang, X.-J., Zhang, X.-Z., Zhuo, R.-X., 2009. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials 30, 1363-1371. doi:10.1016/j.biomaterials.2008.11.027
  • Wu, X.-M., Todo, H., Sugibayashi, K., 2006. Effects of pretreatment of needle puncture and sandpaper abrasion on the in vitro skin permeation of fluorescein isothiocyanate (FITC)-dextran. International Journal of Pharmaceutics 316, 102-108. doi:10.1016/j.ijpharm.2006.02.046

一般研究 General research

  • Dhital, S., Shelat, K.J., Shrestha, A.K., Gidley, M.J., 2013. Heterogeneity in maize Starch granule internal architecture deduced from diffusion of fluorescent dextran probes. Carbohydrate Polymers 93, 365-373. doi:10.1016/j.carbpol.2012.12.017
  • Gee, K.R., Weinberg, E.S., Kozlowski. DJ., 2001. Caged Q-rhodamine dextran: a new photoactivated fluorescent tracer. Bioorganic & Medicinal Chemistry Letters II, 2181-2183. doi:10.1016/S0960-894X(01)00421-8
  • Kaneko, T., Sacki, K., Lee, T., Mizuno, N., 1996. Improved retrograde axonal transport and subsequent visualization of tetramethylrhodamine (TMR)-dextran amine by means of an acidic injection vehicle and antibodies against TMR. Journal of Neuroscience Methods 65, 157-165. doi:10.1016/0165-0270(95)00162-X
  • Liu, H., Song, P., Wei, R., Li, K., Tong, A., 2014. A facile, sensitive and selective fluorescent probe for heparin based on aggregation-induced emission. Talanta 118 348-352. doi:10.1016/j.talanta 2013.09.055
  • Morgan, J.L, Kerschensteiner, D., 2012. Coating Particles with Dextran-Conjugated Fluorescent Dyes or Other Hydrophilic Compounds. Cold Spring Harb Protoc 2012, pdb.prot067058. doi:10.1101/pdb.prot067058
  • Novikova, L., Novikov, L., Kellerth, J.-O., 1997. Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. Journal of Neuroscience Methods 74, 9-15. doi:10.1016/S0165-0270(97)02227-9
  • Zhou, S., Dou, H., Zhang, Z., Sun, K., Jin, Y., Dai, T., Zhou, G., Shen, Z., 2013a. Fluorescent dextran-based nanogels: efficient imaging nanoprobes for adipose-derived stem cells. Polym. Chem. 4, 4103-4112. doi:10.1039/C3PY00522D

其它 OTHER

  • Dolleman-Van der Weel, M.J., Wouterlood, F.G., Witter, M.P., 1994. Multiple anterograde tracing, combining Phaseolus vulgaris leucoagglutinin with rhodamine- and biotin-conjugated dextran amine. Journal of Neuroscience Methods 51, 9-21. doi:10.1016/0165-0270(94)90021-3
  • Gerlach, G.F., Wingert, R.A., 2014. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Dev. Biol. 396, 183-200. doi:10.1016/j.ydbio.2014.08.038
  • Harris, N.R., Watts, M.N., Leskova, W., 2013. Intravital video microscopy measurements of retinal blood flow in mice. J Vis Exp 51110. doi:10.3791/51110
  • Lanske, B., Karaplis, A.C., Lee, K., Luz, A., Vortkamp. A., Pirro, A., Karperien, M., Defize, L.H.K., Ho, C., Mulligan, R.C., Abou-Samra, A.-B., Jüppner, H., Segre, G.V., Kronenberg, H.M., 1996. PTH/PTHrP Receptor in Early Development and Indian Hedgehog–Regulated Bone Growth Science 273, 663-666. doi:10.1126/science.273.5275.663
  • Miller, D.L., Bao, S., Morris, J.E., 1999. Sonoporation of cultured cells in the rotating tube exposure system. Ultrasound in Medicine & Biology 25, 143-149. doi:10.1016/S0301-5629(98)00137-9
  • Miller, DL. Quddus, J. 2000. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound in Medicine & Biology 26, 661-667. doi:10.1016/S0301-5629(99)00170-2
  • Reeves, K.J., Brookes, Z.L.S., Reed, M.W.R., Brown, N.J., 2012. Evaluation of Fluorescent Plasma Markers for in vivo Microscopy of the Microcirculation. Journal of Vascular Research 49. 132-143. doi:10.1159/000331281
  • Richmond, F.J.R., Gladdy, R., Creasy, J.L. Kitamura, S., Smits, E., Thomson, D.B., 1994. Efficacy of seven retrograde tracers, compared in multiple-labelling studies of feline motoneurones. Journal of Neuroscience Methods 53, 35-46. doi:10.1016/0165-0270(94)90142-2

羧甲基(CM)葡聚醣 Carboxymethyl Dextran

DEAE-葡聚醣 DEAE Dextran

藍色葡聚醣 BLUE-dextran

FITC標記菊糖 FITC-inulin

羧甲基(CM)葡聚醣 Carboxymethyl Dextran

硫酸葡聚醣 Dextran Sulfate (DXS)

Small molecular weight dextrans

FITC Ficoll

出版品列表

  1. A.N.de Belder, E.J.Bourne and J.B.Pridham, ß-Glucopyranosides of Hydroxymethyl- and Hydroxyethyl-ferrocene, J.Chem.Soc., 1961, 879, 4464-4467.
  2. A.N.de Belder, B.Lindberg and O.Theander, Partial methylation Studies on methyl ß-D-Glucopyranoside and some Derivatives, Acta Chem. Scand., 1962, 16, 2005-2009.
  3. A.N.de Belder, P.J.Garegg, B.Lindberg et al., The Preparation of 2-tetrahydropyranyl ß-D-Glcopyranosides and methyl 4-(2-tetrahydropyranyl) –ß-D-glucopyanosides, Acta Chem. Scand., 1962, 16, 623-628.
  4. A.N.de Belder, E.J.Bourne and H.Weigel, Studies on tert-butyl derivatives of D-Glucose, Carbohyd.Res.,1966, 3, 1-6.
  5. A.N.de Belder, B.Lindberg and S.Svensson, Synthesis of Keto-dextrans, Acta Chem. Scand., 1968, 22, 949-952.
  6. A.N.de Belder and B.Norrman, The Distribution of substituents in Partially Acetylated Dextran, Carbohyd. Chem., 1968, 8, 1-6.
  7. A.N.de Belder and B.Norrman, The Substitution Patterns of O-(2-hydroxyethyl)starch and O-(2-hydroxyethyl)dextran, 1969, 10, 391-394.
  8. K.A.Granath, R.Strömberg and A.N.de Belder, Studies on Hydroxyethyl Starch, Die Stärke, 1969, 21, 251-256.
  9. A.W.Richter and A.N.de Belder, Antibodies against Hydroxyethylstarch produced in Rabbits by Immunisation with a Protein-Hydroxyethylstarch conjugate, Int.Archs Allergy Appl. Immun., 1976, 52, 307-314.
  10. A.N.de Belder and K.Granath, Preparation and Properties of Fluorescein-labelled dextrans, Carbohydr. Chem., 1973, 30, 375-378.
  11. A.N.de Belder and K.O.Wik, Preparation and Properties of Fluorescein-labelled hyaluronate, Carbohydr. Chem., 1975, 44, 251-257.
  12. A.N.de Belder and E.Wirén, Convenient synthesis of 2-substituted derivatives of methyl alpha-D-glucoside. Carbohyd.Res., 1972, 24, 166-168.
  13. L.Ahrgren and A.N.de Belder, The action of Fenton’s reagent on Dextran, Die Stärke, 1975, 27, 121-123.
  14. A.N.de Belder, Cyclic acetals of the aldoses and aldosides, in Advances Carbohydr.Chem.,1965, 20, 219-302.
  15. A.N.de Belder, Dextran in ‘Industrial Gums’, Academic Press, N.Y. 1993, 399-425.
  16. A.N.de Belder, Dextran in ‘Ullman’s Encyclopedia of Industrial Chemistry, Wiley, 2009.

FITC-labelled products

產品名稱 產品數據(Datafile) 化學品安全說明書(MSDS)
FITC dextran 點我下載 點我下載
FITC Lysine Dextran 點我下載 點我下載
FITC-CM-dextran 點我下載 點我下載
FITC-CM-Polysucrose 點我下載 點我下載
FITC-DEAE-dextrans 點我下載 點我下載
FITC-DEAE-Polysucrose 點我下載
FITC-Dextran sulfate 點我下載
FITC-Hydroxyethyl Starch 點我下載
FITC-Inulin 點我下載 點我下載
FITC-Polysucrose 點我下載 點我下載
FITC-Q-dextran 點我下載
FITC-Trehalose 點我下載
Fluorescein Hyaluronic Acid 點我下載 點我下載

BLUE-dextran

產品名稱 CAS編號 產品數據(Datafile) 化學品安全說明書(MSDS)
BLUE-dextran 87915-38-6 點我下載 點我下載

TRITC-labelled products

產品名稱 產品數據(Datafile) 化學品安全說明書(MSDS)
Tetramethylrhodamine Hyaluronic Acid 點我下載 點我下載
TRITC Lysine Dextran 點我下載 點我下載
TRITC-Dextrans 點我下載 點我下載
TRITC-Polysucroses 點我下載 點我下載

DSS colitis – Dextran sulfate sodium (DSS for colitis)

產品名稱 CAS編號 產品數據(Datafile) 化學品安全說明書(MSDS)
DSS colitis – Dextran sulfate sodium (DSS for colitis) 9011-18-1 點我下載 點我下載

Antonia Red™-labelled products

產品名稱 產品數據(Datafile) 化學品安全說明書(MSDS)
Antonia Red™ Dextrans 點我下載 點我下載
Antonia Red™ Lysine Dextrans 點我下載 點我下載

Dextran sulphates

產品名稱 CAS編號 產品數據(Datafile) 化學品安全說明書(MSDS)
Dextran sulphates 9011-18-1 點我下載

Phenyl Dextran

產品名稱 產品數據(Datafile) 化學品安全說明書(MSDS)
Phenyl Dextran 點我下載 點我下載

Dextran and Polysucrose derivatives

產品名稱 產品數據(Datafile) 化學品安全說明書(MSDS)
CM-Polysucrose 點我下載
CM-Dextran 點我下載 點我下載
DEAE-dextrans 點我下載
DEAE-Polysucrose
Lysine Dextrans 點我下載 點我下載

Polysucrose

產品名稱 CAS編號 產品數據(Datafile) 化學品安全說明書(MSDS)
Polysucrose 26873-85-8 點我下載 點我下載

Q-dextran

產品名稱 產品數據(Datafile) 化學品安全說明書(MSDS)
Q-dextran 點我下載

ATTO™-labelled products

產品名稱 產品數據(Datafile) 化學品安全說明書(MSDS)
ATTO488™ Dextran 點我下載 點我下載
ATTO488™ Lysine Dextran 點我下載 點我下載
ATTO647n™ Lysine Dextran 點我下載